The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells.
نویسندگان
چکیده
منابع مشابه
The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells.
The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glyc...
متن کاملDefective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice.
Stimulation of inhibitory neurotransmitter receptors, such as gamma-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has ...
متن کاملThe inwardly rectifying K(+) channel subunit GIRK1 rescues the GIRK2 weaver phenotype.
The weaver (wv) gene has been identified as a glycine to serine substitution at residue 156 in the H5 region of inwardly rectifying K(+) channel, GIRK2. The mutation is permissive for the expression of homotetrameric channels that are nonselective for cations and G-protein-independent. Coexpression of GIRK2wv with GIRK1, GIRK2, or GIRK3 in Xenopus oocytes along with expression of subunit combin...
متن کاملFunctional Analysis of the weaver Mutant GIRK2 K+ Channel and Rescue of weaver Granule Cells
In the neurological mutant mouse weaver, granule cell precursors proliferate normally in the external germinal layer of the cerebellar cortex, but fail to differentiate. Granule neurons purified from weaver cerebella have greatly reduced G protein-activated inwardly rectifying K+ currents; instead, they display a constitutive Na+ conductance. Expression of the weaver GIRK2 channel in oocytes co...
متن کاملHeteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain.
The weaver (wv) gene (GIRK2) is a member of the G-protein-gated inwardly rectifying potassium (GIRK) channel family, known effectors in the signal transduction pathway of neurotransmitters such as acetylcholine, dopamine, opioid peptides, and substance P in modulation of neurotransmitter release and neuronal excitability. GIRK2 immunoreactivity is found in but not limited to brain regions known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1996
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.93.20.11191